

Holzbrückenbau-Symposium 2025

Der neue Bankmannsteg in Tübingen: Von der Brettschichtholzproduktion über die Werkhalle bis zur Baustelle – Fertigung und Montage einer modernen Holzbrücke

Kurzprofil

Ingenieurholzbau: seit 1958

Brettschichtholz Fichte / Lärche / Douglasie / Accoya / Buche ca. 9 000 m³ – 10 000 m³

PEFC - Zertifikat

Herdweg 23-24

1910 als Sägewerk

Schaffitzel Holzindustrie GmbH + Co.KG

74523 Schwäbisch Hall - Sulzdorf

Geschäftsführung: Jörg Schaffitzel (4. Generation)

Mitarbeiter: 75
Auszubildende: 3

Firma:

Firmensitz:

Firmengründung:

Gesamtleistung: ca. EUR 20 Mio.

schaffitzelholzindustrie

SchaffitzelHolzindustrie

Schaffitzel Holzindustrie

Ihr zuverlässiger Partner in diesen 4 Kompetenzbereichen

Brückenbau

Hallenbau

Kreativbau

BS-Holz

Ihr Referent

Florian von der Heyde

Master of Engineering

2024 - heute

Geschäftsführung Hochbau- und Ingenieurbau

Gottlob Brodbeck GmbH & Co. KG

2020 - 2023

Bereichsleitung Hochbau- und Ingenieurbau

2017 - 2020 Oberbauleitung Hochbau- und Ingenieurbau

2014-2017 **Bauleitung Hochbau- und Ingenieurbau**

DAS SIND WIR: GOTTLOB BRODBECK BAUUNTERNEHMUNG

Warum genau bin ich heute hier?

Radwegbrücke Tübingen-Lustnau

Auftraggeber Universitätsstadt Tübingen – Zentrale Vergabestelle

Bauzeit 05/2024 – 06/2025

Technische Daten3 feldriges Brückenbauwerk, Länge 71,16 m

Auftragsvolumen 2,53 Mio. € netto

Radwegbrücke Tübingen-Lustnau

• Verarbeitets BSH: ca. 300 cbm blockverklebtes BSH GL28h + GL30c

• CO₂ – Bindung: ca. 270 t CO₂

• Stahlteile: ca. 7.400 KG

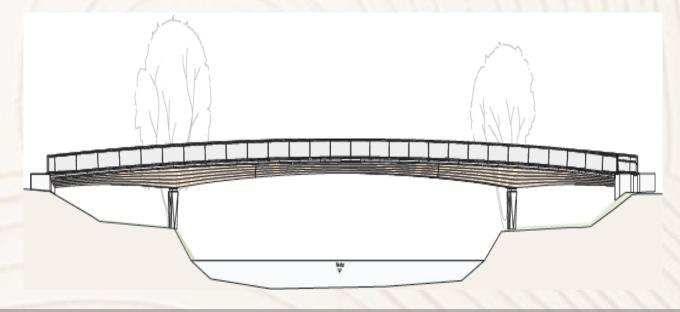
Diese Brücke wächst in ca.

1:45 Minuten nach

Unsere Bauaufgabe

•Ziel: Neubau einer barrierefreien Rad- und Fußwegbrücke über den Neckar zwischen Gartenstraße und Bismarckstraße.

•Teil des Radverkehrskonzepts der Stadt Tübingen und gefördert durch LGVFG und das Sonderprogramm Stadt & Land.


•Grund: Die bestehende Brücke erfüllt nicht mehr die Anforderungen an Nahmobilität und Barrierefreiheit

Auftragsvolumen: 2,53 Mio. €

Betonbau: 485.000 € Holzbau: 730.000 €

Sonstiges: 1.285 Mio.€

Unsere Zusammenarbeit

&

Gemeinsam bilden wir ein starkes Team mit großer Expertise im Brückenbau.

Der Bankmannsteg - Ausschreibung

Materialanforderungen und Holzverwendung

- Nutzungsklasse 2 (DIN EN 1995-1-1), Gebrauchsklasse 1 (EN 335)
- Bei technisch getrocknetem Holz: Gebrauchsklasse 0 zulässig
- Verwendung nur von Bauholz gemäß DIN 4074-1 und -5
- Brettschichtholzträger gemäß DIN EN 14080
- Blockverklebung gemäß DIN 1052-10:2012
- CE-Kennzeichnung erforderlich
- Holz muss aus nachhaltiger Forstwirtschaft stammen (FSC, PEFC oder Einzelnachweis)
- Hersteller des Verbundquerschnitts benötigt Leimgenehmigung A (DIN 1052-10:2012)

Der Bankmannsteg - Ausschreibung

Konstruktion

- Nutzungsklasse 2 (DIN EN 1995-1-1)
- Gebrauchsklasse 1 (EN 335)
- Details zur Überhöhungsfigur in der Ausführungsstatik

Klebstoffe

• Typ I nach DIN EN 301 mit heller Leimfuge

Transport und Lagerung

- Sicherung gegen Kippen und Verrutschen
- Transportverpackung nach Ankunft zügig entfernen
- Schutz vor Feuchtigkeit bis zur Abnahme
- Ziel-Feuchtegehalt: max. 18 %, Gleichgewichtsfeuchte ca. 15 % ±3 %
- Nachweis des Feuchtegehalts durch AN erforderlich

Bereitstellung von getrockneten Lamellen

Messung der Holzfeuchte

Wiegen der Lamellen

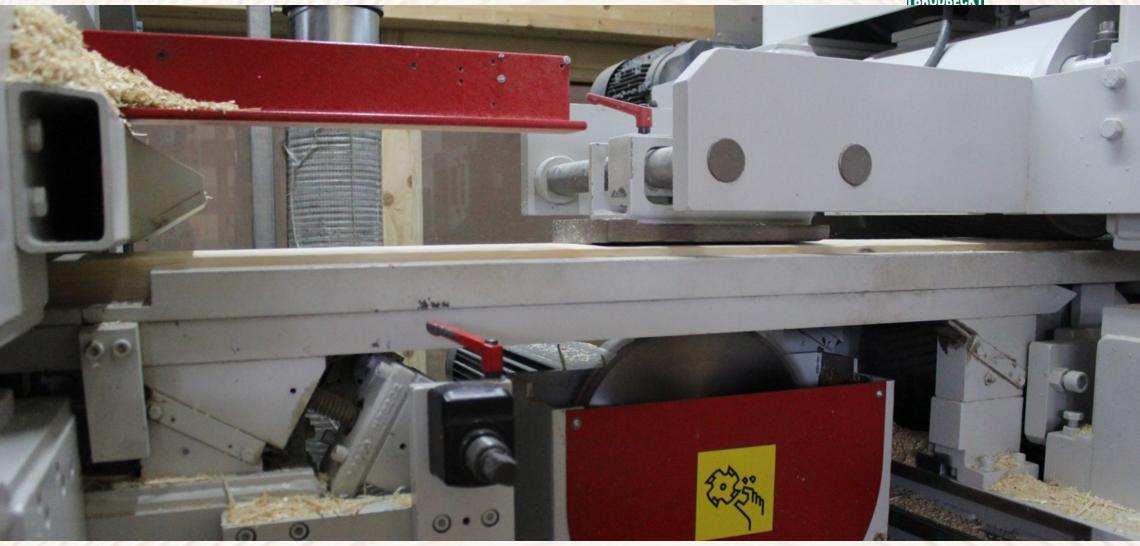
Ermittlung der Holzfestigkeit durch

Sortierplatz und Pufferlager

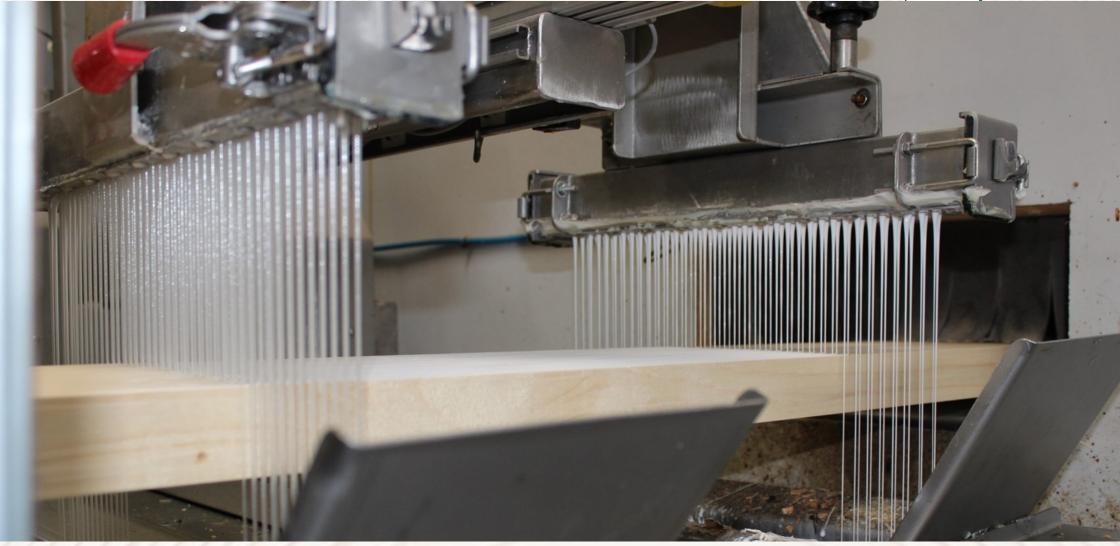
Kappung der zuvor markierten Fehlstellen

Keilzinkenkompaktanlage

Keilzinkenkompaktanlage



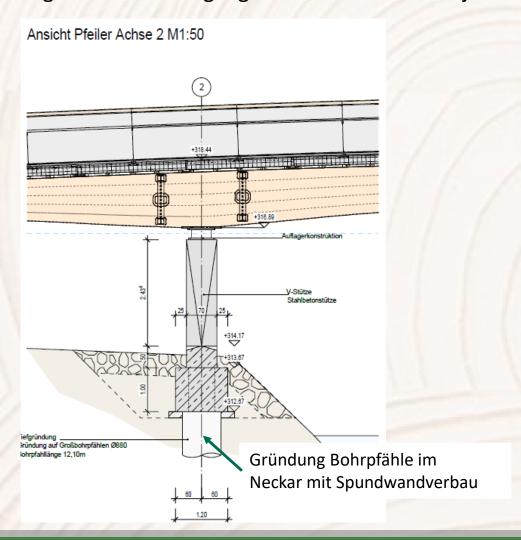
Lamellenhobelmaschine

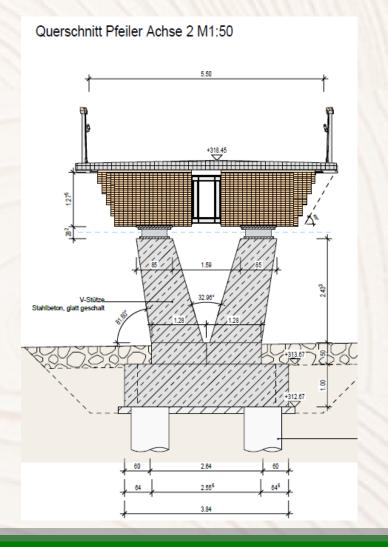


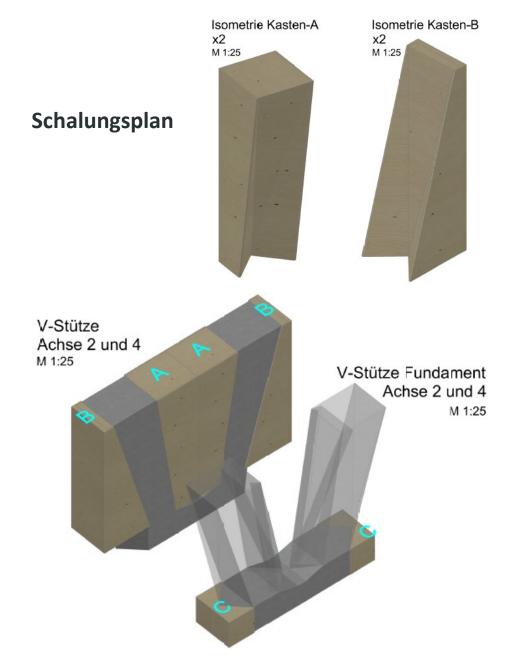
Härter und Kleber werden auf die Lamellen aufgetragen

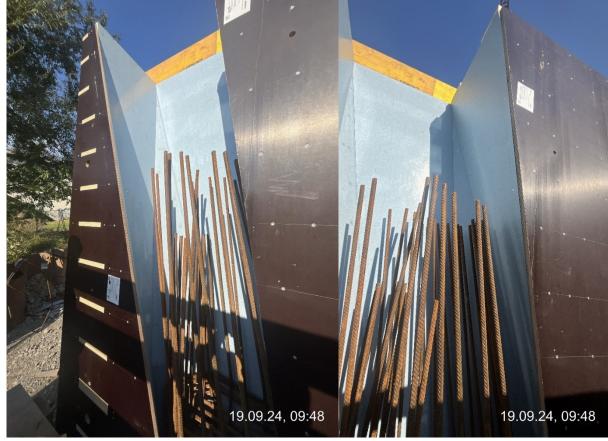
Aufstellen und Sammlung der einzelnen Lamellen

Eindrücke aus dem Abbund



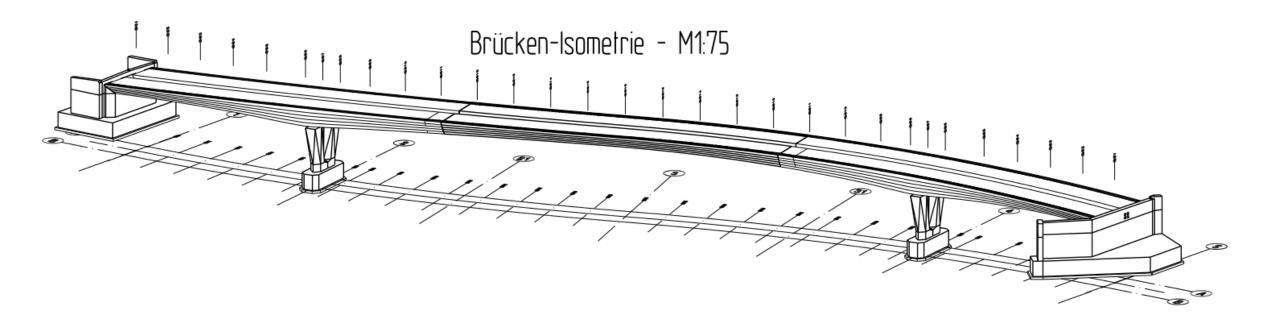



Pfeilerkonstruktion

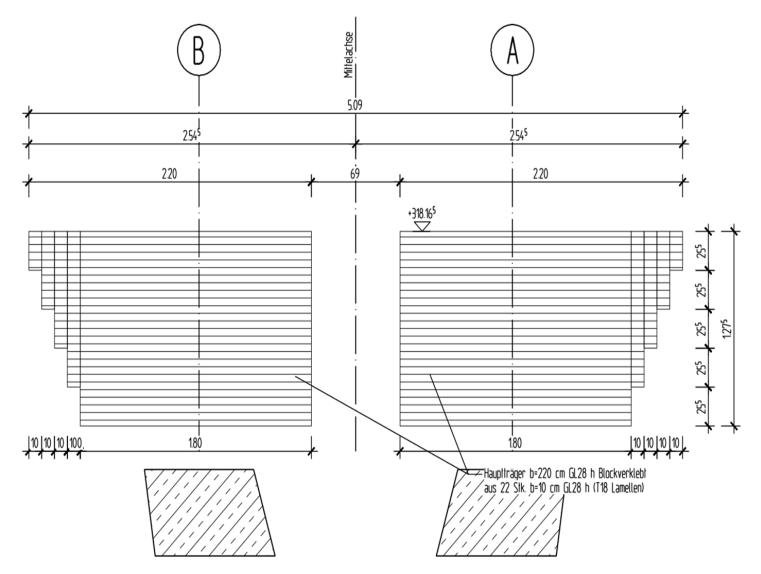


Das gestalterische Highlight war bei diesem Projekt für den Betonbau die Pfeilerkonstruktion.

Wie läuft die Zusammenarbeit ab?



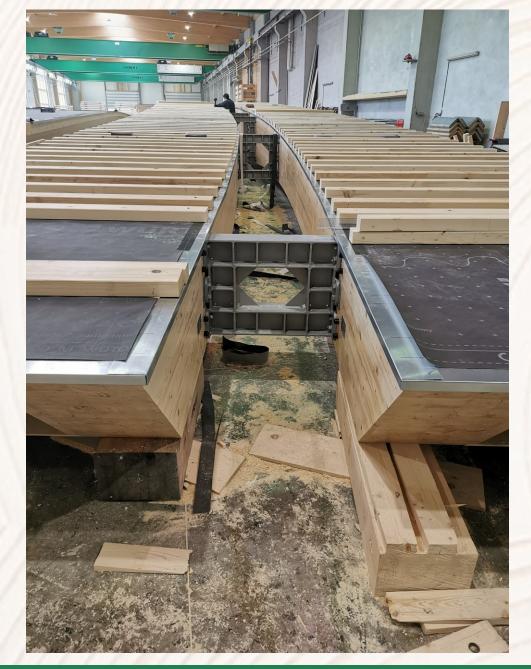
Brücken-Isometrie



Trägerquerschnitt QS7 - M1:25

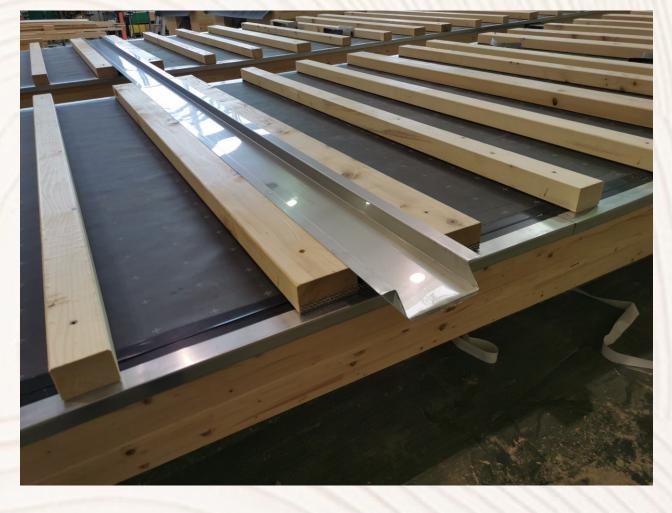
Konstruktiver Holzschutz

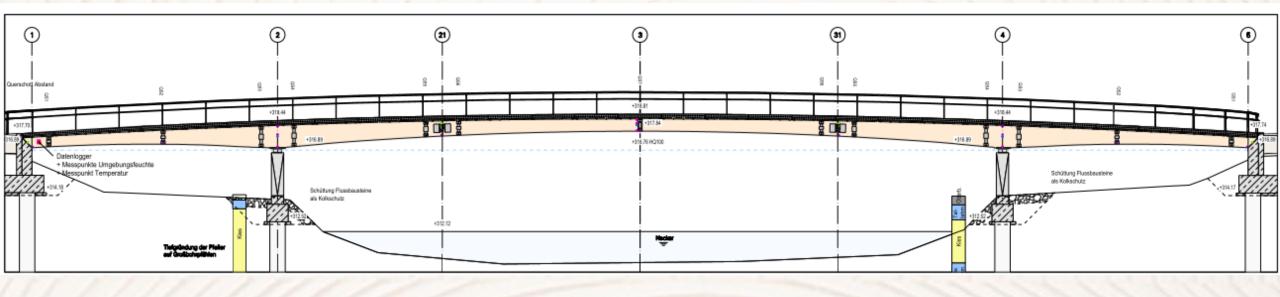
Schutzmaßnahmen (Witterung & Feuchte):


- Holztragwerk wird durch konstruktiven Schlagregenschutz (min. 30° geneigter Regenrichtung) geschützt
- Gute <u>Luftzirkulation</u> durch Bauweise zur Förderung der Abtrocknung
- Werkseitiger <u>diffusionsoffener UV-Schutzanstrich</u>
- <u>Hirnholzbereiche</u> versiegelt → Hirnholzschutz

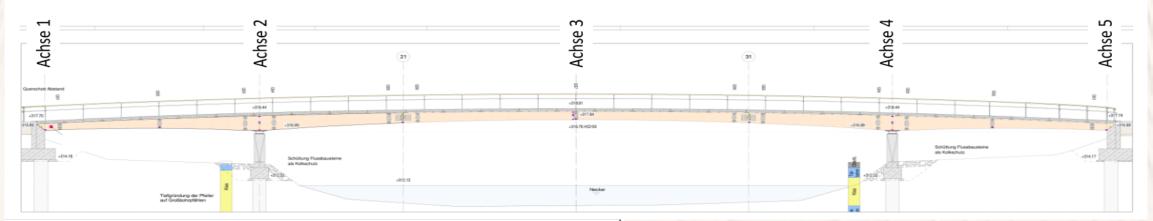
Feuchteschutz im Endzustand:

- Primäre Abdichtung über <u>Betonfertigplatten</u> mit Tropfnut
- Sekundärer Feuchteschutz: diffusionsoffene Folie auf der Holzkonstruktion
- Plattenstöße mit <u>Stahlrinnen unterlegt</u> und elastisch verfugt (schmutzdicht)



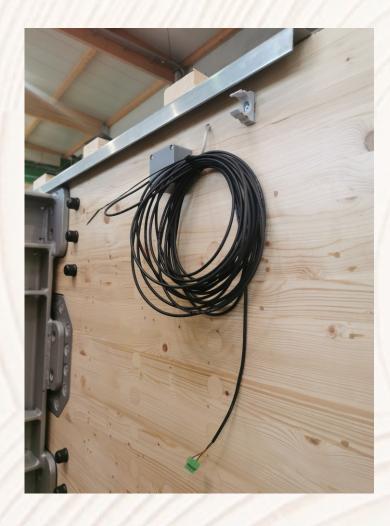


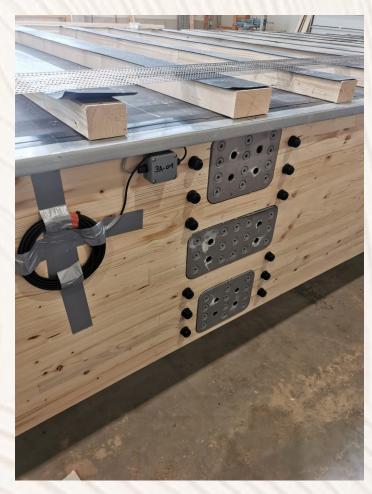
Feuchtemonitoring (MPA Stuttgart)



Feuchtemonitoring (MPA Stuttgart)

Nr.	Achse	Träger	Bezeichnung	Sensortyp	Messtiefe	Bemerkung
					in mm	
1	1	Α	1A-01	Feuchte_Hirnholzoberfläche	0-10	elektrische Widerstandsmessung
2	1	В	1B-01	Feuchte_Hirnholzoberfläche	0-10	elektrische Widerstandsmessung
3	2	В	2B-01	Feuchte_Randnah_außen	30	
4	2	В	2B-02	Feuchte_Randnah_oben	30	elektrische Widerstandsmessung +
5	2	В	B-04	Feuchte_Randnah_unten	30	Abdeckung
6	2	В	2B-05	Feuchte_Randnah_innen	30	
7	2	В	2B-03	Feuchte_Trägermitte	mitte	hygroskopische Feuchtemessung
8	2	Α	2A-01	Feuchte_Randnah_außen	30	elektr. Widerstandsmess. + Abdeckung
9	3	В	3B-01	Feuchte_Randnah_außen	30	
10	3	В	3B-02	Feuchte_Randnah_oben	30	elektrische Widerstandsmessung +
11	3	В	3B-04	Feuchte_Randnah_unten	30	Abdeckung
12	3	В	3B-05	Feuchte_Randnah_innen	30	
13	3	В	3B-03	Feuchte_Trägermitte	mitte	hygroskopische Feuchtemessung
14	3	Α	3A-01	Feuchte_Randnah_außen	30	elektr. Widerstandsmess. + Abdeckung
15	4	В	4B-01	Feuchte_Randnah_außen	30	
16	4	В	4B-02	Feuchte_Randnah_oben	30	elektrische Widerstandsmessung +
17	4	В	4B-04	Feuchte_Randnah_unten	30	Abdeckung
18	4	В	4B-05	Feuchte_Randnah_innen	30	
19	4	В	4B-03	Feuchte_Trägermitte	mitte	hygroskopische Feuchtemessung
20	4	Α	4A-01	Feuchte_Randnah_außen	30	elektr. Widerstandsmess. + Abdeckung
21	5	Α	5A-01	Feuchte_Hirnholzoberfläche	0-10	elektrische Widerstandsmessung
22	5	В	5B-01	Feuchte_Hirnholzoberfläche	0-10	elektrische Widerstandsmessung
101	1	В	1B-HT	Holztemperatur	30	PT100 Temperaturführler
102	2	В	2B-HT	Holztemperatur	30	PT100 Temperaturführler
103	3	В	3B-HT	Holztemperatur	30	PT100 Temperaturführler
104	2	В	2B-Kli	Klima (Lufttemperatur und -Feuchte	e) außerhalb	Klimasensor, befestigt an Trägeraußenseite




Feuchtemonitoring (MPA Stuttgart)

SCHAFFITZEL Bauen mit Holz und Ideen

Vielen Dank für Ihre Aufmerksamkeit

